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ABSTRACT In the realm of modern data analysis, Principal Component Analysis (PCA) stands as a
foundational and indispensable technique. Its widespread adoption and relevance in various domains testify
to its significance in unraveling the complexities of datasets. The goals and principles of PCA are discussed
and identified less than the weight it carries. The goal of this paper is to provide insights on the procedure of
performing PCA on three datasets, the first of which will be a univariate normal distribution of 20 sample size
and the latter two will be wine classification dataset and iris flower classification dataset, standard datasets
collected from UCI machine learning repository. The paper then compares the results from performing PCA
manually to the existing way of PCA with the use of scikit-learn libraries. The paper aims to discuss the
fundamentals of PCA and the results of performing PCA on two different datasets.

INDEX TERMS Principal Component Analysis, SupervisedMachine Learning,Wine Classification Dataset

I. INTRODUCTION

PRINCIPAL COMPONENT ANALYSIS (PCA) is a
widespread technique for data analysis via the means

of dimensionality reduction and data exploration. PCA helps
to identify and segregate the important features or patterns
from a high-dimensional dataset. PCA aims to transform the
original dataset into a number of uncorrelated variables called
principal components. PCA offers a straightforward approach
to effectively reduce the dimensionality of intricate datasets,
unveiling underlying simplified structures that may be con-
cealed within them. This process requires minimal effort and
provides a clear roadmap for extracting valuable insights. The
goal of this paper is to provide valuable insights on PCA, and
implement it with different datasets. We will begin with the
theories and formulae involved with PCA, discussing rele-
vant topics as we go along. We will continue by performing
PCA on a randomly generated dataset sample using normal
distribution and the standard wine classification dataset. By
visualizing the results from the analysis, the dimensionality
reduction can be interpreted and the dispersion of the dataset
for the given targets can be analyzed.

II. METHODOLOGY
A. THEORY
Principal Component Analysis deals with ways to reduce
the dimensionality of the data by scaling the dimensions
down to the target number of dimensions using the best

possible representation. The challenges and limitations that
occcur while working with high-dimensional data is referred
to as the "curse of dimensionality". There are some major
issues that come forth with higher dimension data. Firstly,
the increased dimension of the data brings about sparsity
of the data points. The spread-out data is hard to analyze
and to extract meaningful information from. Similarly, as
the dimensions are increased, the distance between the data
points tend to be similar, making it hard to distinguish similar
and dissimilar data points. It usually calls for higher amount
of data to compensate for the gap created from the newer
dimensions. High dimension data is also computationally
more demanding and requires more resources to be trained.
Also, due to the huge gap between the data points, the chances
of overfitting increases. PCA solves the problem of curse
of dimensionality on feasible datasets using a step-by-step
process to extract the necessary information, omitting the
vague ones. By selecting the number of components for PCA,
a vector with the dimensions of the number of components
and the size of the data is created with the values to best
represent the given data in orthogonal axes. The random
numbers dataset is generated using the "random" library in
numpy which in turn uses Mersenne Twister Algorithm to do
so. With the standard PCA, the standardization of the dataset
usually includes the subtraction of mean from the whole of
the dataset with or without the division by standard deviation.
The standard datasets used go through the same process, also
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referrred to as fit transform. This process is computationally
complex and thus requires a lot of time and space. Thus,
for the standardization of the manually generated dataset,
Randomized PCA is used where the dataset is randomly
projected to another vector using elements from a standard
Normal Distribution.

B. MATHEMATICAL FORMULAE
1) Generating a random projection matrix
The projection matrix used for standardization is made by
selecting elements from a Standard Normal Distribution. The
normal distribution follows the formula:
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2) Transformation of datasets
Transformation of the synthetic dataset is done bymultiplying
the Randomly Generated Matrix of size 20x2 by the 2x2 ma-
trix generated by selecting elements from a standard normal
distribution.

TransformedData =
[
a1 b2 ... a20
a1 b2 ... b20

]
@

[
c1 d1
c2 d2

]
(2)

The standard dataset is passed through the fit-transform,
which words as below:

TransformedData =
(
x − µ

σ

)
(3)

3) Calculation of Variance along dominant axis

Variance =
∑

(x −mean)2

N
(4)

4) Covariance Matrix

SX =
1

m− 1
(XT · X) (5)

5) Eigenvectors and eigenvalues
For a given square matrix B, the equation for eigenvectors and
eigenvalues is:

B · v = λv (6)

In Equation 6, v represents an eigenvector and λ is the
corresponding eigenvalue.

To find the eigenvalues, we rearrange the equation as:

(B− λiI) · vi = 0 (7)

6) Proportion of Variance
The proportion of variance for each of the eigenvalue can be
calculated as:

Proportion of Variance =
λi∑n
i=1 λi

(8)

C. SYSTEM BLOCK DIAGRAM
The system workflow is as shown below:

FIGURE 1. PCA Workflow

D. INSTRUMENTATION TOOLS

The entirety of the process is done using Python. Google
Colab, short for Google Colaboratory, is an online platform
provided by Google for running and sharing Jupyter notebook
environments and it was used for all of the coding. Google co-
lab provides a number of built-in functions for data analysis.
A number of python libraries have been used to perform PCA.
Firstly, the library numpy is used to generate a random sample
of 20x2. The function randn is used to generate a random
sample. The projection matrix for the dataset is prepared
using another function rand which is used to sample random
numbers from a normal distribution. Matrix multiplication is
performed using the numpy function matmul. var and cov
are used to determine the variance of the data along the
dominant axis and the covariance matrix respectively. Within
numpy, linalg allows calculation of eigenvectors and eigen
values using the function eig. These are the most significant
functions used for the analysis. The standard datasets are
loaded through scikit-learn using load-iris and load-wine
functions. Another popular library, Pandas is used to hold the
data values and present the data in tabular form. The proper
analysis is then visualized through some graphics libraries
likematplotlib and seaborn. Finally, the obtained PCA results
are compared to the PCA performed by PCA function within
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scikit-learn.

E. WORKING PRINCIPLE
1) Dataset Preparation
Two standard datasets are collected from the scikit-library.
The iris and wine classification datasets are imported us-
ing the library. The data is then standardized using the fit-
transform function to obtain normalized data with zero mean
and standard deviation of one. A random dataset is synthe-
sized using numpy libraries and the data is then transformed
using a projection matrix formed using data points from a
standard normal distribution.

2) Eigenvector Computation
The datasets are then used to compute their covariance. Us-
ing the covariance matrix, eigenvalues and eigenvectors are
obtained. The proportion of variance is also calculated and
the eigen vectors are selected as the principal components
for analysis. The dot product between the selected component
and the standardized dataset is used to analyze the dataset and
transform it.

3) Data Analysis and Visualization
The transformed data is used to compute the covariance ma-
trix which stores the result of PCA. The outcome is then visu-
alized using different python data visualization libraries. The
process is repeated with different combination of principal
components selected for the data analysis and visualization.

III. RESULTS
A. PCA ON RANDOM DATASET

FIGURE 2. Plot of the random numbers

We conducted a PCA analysis on a randomly generated
dataset to examine how effectively PCA reduces the dimen-
sions of synthetic data. By creating scatter plots, we assessed
the extent of dimensionality reduction and the variance ex-
plained by the principal components. We visualized the data
in two scenarios: first, when reduced to 1D using each prin-
cipal component individually, and second, when reduced to
2D using both principal components simultaneously. Figure

2 shows a plot of the numbers initialized randomly.

FIGURE 3. Transformation using a matrix sampled from Normal
Distribution
Figure 3 shows a plot of the random numbers that have
been transformed using a 2x2 matrix initialized by selecting
points from a normal distribution. The transformation helps
the dataset to converge in a direction.

FIGURE 4. Application of PCA with two principle components

FIGURE 5. Application of PCA with one principle component

The results from the application of 2 principle components
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for the analysis can be seen in Figure 4. The entirety of the
data lies around the x-axis in the output.
The results from the application of 1 principle component
for the analysis can be seen in Figure 5. Since only one
principal component has been used, there’s a single axis to
plot the graph. This figure also demonstrates the idea of
dimensionality reduction as enforced by PCA.

B. PCA ON IRIS DATASET

We conducted PCA on the well-known Iris dataset obtained
from the scikit-learn library. The dataset was initially vi-
sualized using a table that displayed the various attributes
associated with each target. The Iris dataset consists of 4
continuous-value attributes for each data entry, along with
their corresponding target classes.
TABLE 1. Iris Dataset (Attributes as Rows)

Attribute Sample 1 Sample 2 Sample 3

Sepal Length 5.1 6.3 7.6
Sepal Width 3.5 2.8 3.0
Petal Length 1.4 5.1 6.6
Petal Width 0.2 1.5 2.1

FIGURE 6. Application of PCA with one principal component on Iris
Dataset

FIGURE 7. Best-case scenario two components analysis on Iris Dataset

FIGURE 8. Worst-case scenario two components analysis on Iris Dataset

FIGURE 9. Two components analysis using scikit-learn on Iris Dataset

Figure 6 shows the application of PCA using the best
principal component on the dataset. As seen from the figure,
the target class ’setosa’ is easily separable from the data
but the other classes are not distinguishable using a single
component. Similarly, the best case scenario while using two
principal components is already able to separate the data
classes much better. Figure 7 shows the classes and also con-
forms to the dataset pattern as obtained from a single principal
component. The worst case for using two components tells a
tale much different. The classes are not distinguishable and
the features aren’t learnt well as shown in Figure 8. Finally the
results obtained by using the PCA functionality from scikit-
library as is in Figure 9 shows a plot similar to Figure 7
with inverted x-axis. Finally, the data classes are the most
separable when using three principal components as evident
from Figure 10. It also reciprocates with the findings from
using a single and two principal components. The worst case
scenario while using three principal components displays a
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FIGURE 10. Best-case scenario three components analysis on Iris Dataset FIGURE 11. Worst-case scenario three components analysis on Iris Dataset

plot, where the classes cannot be identified.

C. PCA ON WINE DATASET
We performed PCA on the standard wine dataset obtained
from the scikit-learn library. The dataset was firstly visualized
through a table with the different attributes linkedwith each of
the targets. There are 13 continuous-value attributes attached
with each of the data and the corresponding target class. The
higher number of attributes in the wine classification dataset
does introduce more challenges to learn new features and
variation in the data than the Iris dataset which had only 4. The
performance of PCA on wine classification dataset is plotted
for different number of principal components along with their
best and worst cases.

TABLE 2. Wine Classification Dataset Sample

Attribute Sample 1 Sample 2 Sample 3

Alcohol (%) 13.24 12.37 14.06
Malic Acid (g) 1.71 1.17 2.15

Ash (g) 2.64 2.32 2.61
Alkalinity of Ash 15.5 23.0 17.0
Magnesium (mg) 127 88 121
Total Phenol 2.8 2.22 2.51
Flavanoids 3.06 2.45 2.61

Nonflavanoid Phenols 0.28 0.26 0.31
Proanthocyanins 2.29 1.9 1.25
Color Intensity 5.64 4.54 5.05

Hue 1.04 1.06 1.06
OD280/OD315 of Diluted Wines 3.92 3.21 3.58

Proline 1065 938 1050
Target Class 1 Class 2 Class 3

FIGURE 12. Application of PCA with one principle component on Wine
Dataset

FIGURE 13. Two components analysis using scikit-learn on Wine Dataset
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FIGURE 14. Best-case scenario two components analysis on Wine Dataset FIGURE 15. Worst-case scenario two components analysis on Wine Dataset

FIGURE 16. Best-case scenario three components analysis on Wine
Dataset

The results as shown in the Figure 12 shows how the dataset
is almost separable into different classes with the application
of a single principal component. This result is better than the
one obtained with Iris Dataset. The following Figure 13 is
the result obtained by performing PCA using the function
provided by the scikit-learn library. Although there is some
overlap between thewine classes, most of the data points lie in
separable spaces. This figure is just like the best case scenario
obtained for two principal componenets as in Figure 14 with a
vertical flip. The worst case scenario shows how the features

FIGURE 17. Worst-case scenario three components analysis

have not been learnt and the classes are not separable at all as
in Figure 15.
Finally, the data points can also be plotted in a 3d graph using
three principal components. The classes can be easily identi-
fied and is in conformation with the prior gained information
from using one and two principal componenets. On the other
hand, the worst case scenario shows data classes overlapped
with each other to the point where none of the classes can
be identified properly. The features are not learnt well with
this combination of principal components, as is presented in
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Figure 17.

IV. DISCUSSION AND ANALYSIS
The previous sections demonstrated the successful usage of
Principal Component Analysis(PCA) for dimensionality re-
duction. Using the forementioned principles, PCA was per-
formed on different datasets and the obtained results were
plotted in different graphs. The application of PCA on the
datasets was able to lower the dimensions of the matrix. The
covariance matrix obtained as the subsequent result after the
matrix transformation displayed a reduction in off-diagnol
elements or low value elements and increase in the diagonal
elements. The obtained result was comparable to the goal of
PCA.
A number of notable features were learnt from the results of
PCA. The general trend seen with the eigenvalues of princi-
pal components selected and the amount of distinguishable
classes from the results is that they’re directly proportional.
Higher eigenvalues generally had better results distinguishing
the data then the corresponding lower eigenvalues. This, the
general idea would be to use the higher eigenvalues. However,
there are still some outliers that need acknowledgement that
perform better than some other principal components with
higher eigenvalues.
While higher number of principal components selected to
separate the given data should generally result in better class
separability, it cannot be blindly followed as evident from the
previous figures. In a lot of cases, taking only two prinpical
components have better performance than taking three prin-
cipal components. Clearly, even though the higher number
of principal components is able to capture the features and
different variations, they might not be able to cover the class
boundaries. The higher number of principal components may
also cause the capture of unnecessary features and noise.
Thus, the selection of number of prinpical components is
required with different cases to obtain the best results.
Thus, the best results from PCA can only be obtained by
comparing and testing for the different eigenvalues and the
principal components to select. The results also show that
valuable features and information can be obtained from the
dataset with the application of PCA

V. CONCLUSION
This lab was conducted coherent to the principles of PCA.
The application of PCAon a randomized dataset and two stan-
dard datasets shows its effectiveness over different types of
data. Themain purpose of PCA i.e. Dimensionality Reduction
was performed successfully and effectively represented using
different number of principal componenets. By focusing on
the principal components, PCA was able to get rid of noise
and other irrelevant information with the correct selection.
It has been evident from the analysis that the larger number
of principal components helps improve the performance of
PCA. However, PCA does come with its own shortcom-
ings. Firstly, the analysis on the random dataset visualized
the biasedness of PCA in case of any outliers. When using

lesser number of principal componenets, the data becomes
less separable. Also, since the principal components have the
assumption of linearity, the relationships and the pattern from
the data is not always learnt.
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